# Tools for Drell-Yan at NNLO

Ryan Gavin
UW Madison

with Y Li, F Petriello, S Quackenbush

Brookhaven Forum 2010 A Space-Time Odyssey May 27, 2010

# Drell-Yan at LHC

- neutral current Z production has large σ
  - clear collider signature with l<sup>+</sup>l<sup>-</sup>
- LHC standard candle
  - detector calibration
  - luminosity monitoring (Dittmar et. al.)
  - measure EW parameters
  - PDF measurements

# DY at NNLO?

- LHC will produce large amount of data
  - → small statistical error
  - → measurements limited by systematics & theoretical error
- Can expect percent level physics
- Need to understand distributions, backgrounds, uncertainties
  - measurements require theory input
  - need higher order calculations

# Need for Differential Distributions

- TY at NNLO calculated, but inclusive (Hamberg, Matsuura, van Neerven)
- differential distributions needed
  - PDF extraction Z rapidity dependent
  - simulate distributions in detector-like scenarios
    - > cuts on  $p_T$ , rapidity, isolation
- @ 2006: FEWZ (Melnikov, Petriello)
  - compute W/Z DY cross sections in hadron colliders
    - > Fully Exclusive at LO, NLO, & NNLO in QCD
    - > Leptonic decays of W & Z contain full spin correlations

#### **FEWZ**

- Fortran based numerical code which allows user to control DY calculation:
  - two executables: FEWZw & FEWZz, for charged and neutral current DY production respectively
  - perturbative order in QCD & CM energy
  - collider type (pp or  $p\overline{p}$ )
  - numerical integration parameters (Vegas)
  - PDF set (CTEQ & MRST/MSTW)
  - cuts on leptons

#### FEWZ

- Example: σ<sub>z→l+l</sub>-(lepton p<sub>T</sub> cut)
- clear discrepancy between NLO & NNLO at high p<sub>T</sub> cutoff

- NNLO: blue

- NLO: red

- LO: green



# **FEWZ**

- FEWZ is very useful, but could use improvements
  - can only calculate one number per run
  - lengthy run time for NNLO
  - user must manually hard code cuts
  - some parameters are hard coded (Vegas, EW)
- Changes to some FEWZ parameters require recompiling
- Goal: ease use of FEWZz (neutral current DY) for user

# Improved FEWZz

- New features to FEWZz:
  - PDF error propagation
  - revised input file (set cuts, PDF, jet algorithm, isolation)
  - simultaneous generation of predefined histograms
    - > histogram parameters set in a histogram input file
  - reduced run time for NNLO calculations

#### Reduced Run Time at NNLO

- Previous version, entire NNLO expression in integrand
  - large expression for Vegas to integrate
- NNLO expression now sensibly split into 'sectors'
  - each sector integrated separately, then combined later
  - some sectors anti-correlate recombined before integration - improve convergence and lower X<sup>2</sup>
  - separate sectors can be evaluated in parallel using multiple processors locally, or by using a batch job system (e.g. Condor)

# Input File

- Improved input file → improved user interface
  - set CMS collision energy,  $\mu_F$  &  $\mu_R$  scales, collider type, EW parameters (couplings, masses, widths)
  - set Vegas parameters (desired accuracy, evaluation, iterations)
  - set desired cuts: invariant lepton mass Z, lepton, & jet  $p_T$  & rapidity (Y,  $\eta$ ) jet algorithm cone size,  $\Delta R_{algo}$  isolation: lep/lep, lep/jet min & max # of jets allowed in event
  - define desired PDF and related parameters
- These parameters no longer hard coded

# Histogram Input File

- Histograms in FEWZz are predefined
  - lepton pair invariant mass
     Z, lep & jet: pT & rapidity
     ΔR separation: lep/lep, lep/jet, & jet/jet
     Collins-Soper related moments (A<sub>i</sub>) and angles
- Parameters (for individual histograms) set in histogram input file:
  - lower edge of histogram
     higher edge
     # of bins
     T/F to write histogram to output file

- Study of theoretical uncertainties (Adam, Halyo, Yost)
  - in neutral current DY at LHC 14 TeV
- FEWZz used to generate numerics for DY at NNLO in QCD
  - 3 kinematic regions

- Study of theoretical uncertainties (Adam, Halyo, Yost)
  - in neutral current DY at LHC 14 TeV
- FEWZz used to generate numerics for DY at NNLO in QCD
  - 3 kinematic regions

| Cut 1 | 40 GeV < M <sub>II</sub>       | η <sub>lep</sub>   < 2          | lep p <sub>T</sub> > 20 GeV |
|-------|--------------------------------|---------------------------------|-----------------------------|
| Cut 2 | 40 GeV < M <sub>II</sub>       | 1.5 <  η <sub>lep</sub>   < 2.3 | lep p⊤ > 20 GeV             |
| Cut 3 | 79 < M <sub>II</sub> < 104 GeV | η <sub>lep</sub>   < 2          | lep p⊤ > 20 GeV             |

| Cut 1 | 40 GeV < M <sub>II</sub>       | η <sub>lep</sub>   < 2          | lep p <sub>T</sub> > 20 GeV |
|-------|--------------------------------|---------------------------------|-----------------------------|
| Cut 2 | 40 GeV < M <sub>II</sub>       | 1.5 <  η <sub>lep</sub>   < 2.3 | lep p⊤ > 20 GeV             |
| Cut 3 | 79 < M <sub>II</sub> < 104 GeV | η <sub>lep</sub>   < 2          | lep p⊤ > 20 GeV             |

| Cut 1 | 40 GeV < M <sub>II</sub>       | η <sub>lep</sub>   < 2          | lep p <sub>T</sub> > 20 GeV |
|-------|--------------------------------|---------------------------------|-----------------------------|
| Cut 2 | 40 GeV < M <sub>II</sub>       | 1.5 <  η <sub>lep</sub>   < 2.3 | lep p <sub>T</sub> > 20 GeV |
| Cut 3 | 79 < M <sub>II</sub> < 104 GeV | η <sub>lep</sub>   < 2          | lep p <sub>T</sub> > 20 GeV |

| NLO                   | Adam, Halyo,<br>Yost | Improved<br>FEWZz |
|-----------------------|----------------------|-------------------|
| σ <sub>tot</sub> (pb) | 2358.1±2.3           | 2357.5±0.7        |
| σ <sub>Cut 1</sub>    | 716.0±0.7            | 714.4±0.8         |
| OCut 2                | 74.1±0.07            | 74.18±0.09        |
| OCut 3                | 657.2±0.7            | 656.6±0.3         |

| Cut 1 | 40 GeV < M <sub>II</sub>       | η <sub>lep</sub>   < 2          | lep p <sub>T</sub> > 20 GeV |
|-------|--------------------------------|---------------------------------|-----------------------------|
| Cut 2 | 40 GeV < M <sub>II</sub>       | 1.5 <  η <sub>lep</sub>   < 2.3 | lep p <sub>T</sub> > 20 GeV |
| Cut 3 | 79 < M <sub>II</sub> < 104 GeV | η <sub>lep</sub>   < 2          | lep p <sub>T</sub> > 20 GeV |

| NLO  | Adam, Halyo, | Improved |
|------|--------------|----------|
| INLO | Yost         | FEWZz    |

|                       | 001        | I L VV L L |
|-----------------------|------------|------------|
| σ <sub>tot</sub> (pb) | 2358.1±2.3 | 2357.5±0.7 |
| σ <sub>Cut 1</sub>    | 716.0±0.7  | 714.4±0.8  |
| σ <sub>Cut 2</sub>    | 74.1±0.07  | 74.18±0.09 |
| σ <sub>Cut</sub> 3    | 657.2±0.7  | 656.6±0.3  |

# NNLO Adam, Halyo, Improved Yost FEWZz

| 1001 1 1 1 1 2 2 2    |            |            |  |  |
|-----------------------|------------|------------|--|--|
| σ <sub>tot</sub> (pb) | 2334.9±4.6 | 2331.1±0.8 |  |  |
| σ <sub>Cut 1</sub>    | 726.2±5.5  | 719.5±4.1  |  |  |
| OCut 2                | 73.39±1.96 | 75.6±1.1   |  |  |
| OCut 3                | 650.4±4.0  | 656.0±2.8  |  |  |

- $\odot$  Scale variation  $\mu_R$ ,  $\mu_F$ 
  - contribution to theoretical error in fixed order calculations
- Improved FEWZz → inclusive, NC DY cross section (pb)
  - LHC @ 7 TeV66 < M<sub>II</sub> < 116 GeV</li>

- Scale variation μ<sub>R</sub>, μ<sub>F</sub>
  - contribution to theoretical error in fixed order calculations
- Improved FEWZz → inclusive, NC DY cross section (pb)
  - LHC @ 7 TeV 66 < M<sub>II</sub> < 116 GeV

|      | μ <sub>R</sub> =μ <sub>F</sub> =M <sub>Z</sub> /2 | μ <sub>R</sub> =μ <sub>F</sub> =M <sub>Z</sub> | $\mu_R=\mu_F=2M_Z$ | Δσ/σ          |
|------|---------------------------------------------------|------------------------------------------------|--------------------|---------------|
| NLO  | 920.5±0.1                                         | 931.5±0.1                                      | 945.6±0.2          | 1.51% ± 0.02% |
| NNLO | 1040.4±0.5                                        | 1033.2±0.4                                     | 1030.0±0.5         | 0.70% ± 0.06% |

- $\odot$  Scale variation  $\mu_R$ ,  $\mu_F$ 
  - contribution to theoretical error in fixed order calculations
- Improved FEWZz → inclusive, NC DY cross section (pb)
  - LHC @ 7 TeV66 < M<sub>II</sub> < 116 GeV</li>

 $\delta_{integration}/\delta_{scale} \le 10\%$ 

|      | μ <sub>R</sub> =μ <sub>F</sub> =M <sub>Z</sub> /2 | μ <sub>R</sub> =μ <sub>F</sub> =M <sub>Z</sub> | $\mu_R=\mu_F=2M_Z$ | Δσ/σ          |
|------|---------------------------------------------------|------------------------------------------------|--------------------|---------------|
| NLO  | 920.5±0.1                                         | 931.5±0.1                                      | 945.6±0.2          | 1.51% ± 0.02% |
| NNLO | 1040.4±0.5                                        | 1033.2±0.4                                     | 1030.0±0.5         | 0.70% ± 0.06% |

Preliminary...

LHC @ 7 TeV





# More Distributions



# More Distributions



# More Distributions



#### Conclusions

- Drell-Yan is still a very important process at the LHC
  - need higher order calculations
    - → NNLO QCD corrections to DY
  - need differential distributions at NNLO
- FEWZ is an excellent tool to study higher order effects, through NNLO QCD, on DY at the differential level
- Updated version of FEWZz to be released soon, with many improvements to usability & functionality
  - EW corrections to come in the near future
- Encourage you to download and try FEWZz, especially when new version released (<a href="http://www.hep.wisc.edu/~frankjp/FEWz.html">http://www.hep.wisc.edu/~frankjp/FEWz.html</a>)